Supporting information

Coordination complex between haemin and parallel-quadruplexed d(TTAGGG)

Toshiyasu Mikuma,^a **Takako Ohyama,** ^a **Norifumi Terui,** ^a**Yasuhiko Yamamoto**^{*a} **and Hiroshi Hori** ^b ^aDepartment of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan. ^bGraduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.

Fig.1. Circular dichroism spectrum of 5 μ M haemin-((d(TTAGGG))₄)₂ complex at pH 7.00 and room temperature.

Fig.2. Circular dichroism spectrum of 0.5 μ M haemin-(d(TTAGGG)₄)₂ complex in the presence of 300 mM KCl at pH 7.00 and room temperature.

Fig.3. Temperature dependence of the downfield-shifted portions of the 600 MHz ¹H NMR spectra of haemin-($(d(TTAGGG))_4$) ₂ complex in 90% H₂O/10% D₂O at pH 7.04, in the presence of 300 mM KCl.

Fig.4. Temperature dependence of the downfield-shifted portions of the 600 MHz ¹H NMR spectra of haemin- $((d(TTAGGG))_4)_2$ complex in 90% H₂O/10% D₂O at pH 9.95, in the presence of 300 mM KCl.